
Graph Codes - 2D Projections of Multimedia
Feature Graphs for Fast and Effective Retrieval

Stefan Wagenpfeil∗, Felix Engel∗, Paul McKevitt∗∗, Matthias Hemmje∗

Abstract—Multimedia Indexing and Retrieval is generally
designed and implemented by employing feature graphs. These
graphs typically contain a significant number of nodes and edges
to reflect the level of detail in feature detection. A higher level of
detail increases the effectiveness of the results but also leads to
more complex graph structures. However, graph-traversal-based
algorithms for similarity are quite inefficient and computation
intensive, especially for large data structures. To deliver fast and
effective retrieval, an efficient similarity algorithm, particularly
for large graphs, is mandatory. Hence, in this paper, we define
a graph-projection into a 2D space (Graph Code) as well as the
corresponding algorithms for indexing and retrieval. We show
that calculations in this space can be performed more efficiently
than graph-traversals due to a simpler processing model and a
high level of parallelisation. In consequence, we prove that the
effectiveness of retrieval also increases substantially, as Graph
Codes facilitate more levels of detail in feature fusion. Thus,
Graph Codes provide a significant increase in efficiency and
effectiveness (especially for Multimedia indexing and retrieval)
and can be applied to images, videos, audio, and text information.

Index Terms—indexing, retrieval, multimedia, graph code,
graph algorithm

I. INTRODUCTION AND MOTIVATION

Multimedia assets like images, videos, texts, or audio are
deeply integrated in today’s life for many users. The ease of
creating Multimedia content e.g., on Smartphones, and pub-
lishing it on Social Media is unseen in history. Infrastructure
services like high-speed networks, cloud-services, or online
storage need a good and fast indexing of Multimedia content
[1] as e.g. every single minute, 147.000 photos are uploaded
to Facebook, 41.6 million Whatsapp messages are sent, or
347.000 stories are posted by Instagram [2]. Semantic indexing
and fast retrieval of these assets are essential for managing
this large amount of information. For this task it is common
to use graph-based technologies and structures, as Multimedia
information is based on feature nodes and links between these
nodes [3]. To increase the retrieval accuracy, increased data
from various sources (e.g. Social Media, Documents, Semantic
Web, embedded metadata) is fused into large feature-graphs.
But to employ these features particularly for precise retrieval,
fast graph-based similarity algorithms are required. Current
solutions, as e.g. Neo4J databases [4] and their integrated
algorithms fail to deliver acceptable processing times for
retrieval.
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In this paper, we describe fast and accurate Indexing and
Retrieval algorithms for Multimedia feature-graphs. These
algorithms are based on a projection of graphs into a 2D
space, which supports parallelisation in retrieval and can uti-
lize standard pattern matching algorithms including Machine
Learning. The presented concept can be applied to any type
of Multimedia feature, which can be represented as a graph
(e.g. images, videos, text, audio). In our experiments we
will give detail on performance, accuracy and quality based
on various datasets, measured on various devices including
tablets. In section II, we summarize the current state of the
art and related work. Section III gives the mathematical and
algorithmical details of Graph Codes and their application,
which are implemented in section IV. Section V discusses
detailed results of experiments regarding effectiveness and
efficiency. Finally, in section VI a conclusion is summarized
and an outlook to future work is given.

II. STATE OF THE ART AND RELATED WORK

This section provides an overview of current Multimedia
feature extraction techniques supporting indexing and retrieval,
which either represent or contribute to indexing features of
Multimedia content. Selected indexing and retrieval of textual
information, images, audio, and video assets is described
including current concepts for feature fusion, which will result
in large semantic graph structures. These technologies can all
contribute information to feature graphs. A brief description
of the mathematical background of these graphs is given
including an overview of current datasets for indexing and
retrieval.

In our previous work, we already introduced the Generic
Multimedia Analysis Framework (GMAF) [5], [6], [7],
[8] as an unifying framework, that is able to fuse various
Multimedia features into a single datastructure. The GMAF
utilizes selected existing technologies as plugins to support
various Multimedia feature detection algorithms for text (e.g.
social media posts, descriptions, tag lines) [9], [10], [11],
images (especially object detection and spatial relationships
including the use of machine learning) [12], [13], [9],
[14], [9], audio (transcribed to text) [15], [16], [13],
and video including metadata [17] and detected features
[18], [19], [16]. In general, every detected feature can be
regarded as a Multimedia indexing term. The indexing
term of any relevant feature thus becomes part of the
vocabulary of the overall retrieval index. In Multimedia
Indexing and Retrieval (MMIR), these terms typically
have structural and/or semantic relationships to each other.



Fig. 1. Exemplary MMFGex and its representations. Figure 1a shows
a typical MMFG visualized as GraphML with yEd, 1b illustrates a small
exemplary instance graph. 1c shows a table representation and the Valuation
Matrix VM , 1d the corresponding Graph Code.

Thus, graph-based structures are appropriate candidates to
represent Multimedia features including their structural and
semantic relationships. The GMAF provides an extendable
representation schema and processing architecture for fusing
detected Multimedia features and generating Multimedia
Feature Graph (MMFG) datas tructures. The Multimedia
Feature Graph (MMFG) is a graph structure for representing
semantic and technical features of Multimedia Assets and is
defined as MMFGAsset = (N,E), where N is the set of
nodes and E the set of edges between these nodes. Both N
and E are employed to represent special Multimedia Features
and their relationship, that have been detected within an
asset (e.g. instances of object, region, colour, or relationship
features). Elements of N and E are represented by types.
The MMFG is a weighted and directed graph and fuses

technical and semantic information into a single model [20].
A complete description of the MMFG is given in [5], a
reference implementation is available on Github [7], and a
visualisation of a small section of an exemplary MMFG is
shown in Figure 1a, which shows and exemplary MMFG
including several feature types in different node and edge
type colours (e.g. detected objects in blue, detected landmarks
in yellow, synonyms in green, spatial relationships in red).
Visualisation has been performed with yEd [21]. A complex
MMFG contains feature representations e.g. from text (e.g.
metadata or Social Media), images (e.g. objects, colours,
spatial attributes), video, and audio information (if applicable)
and Figure 1a shows an exemplary MMFG snippet, where
the following feature categories are visible: object detection,
dominant colours, spatial relationships, landmark detection.

From a Mathematical Perspective, graphs can be
represented through their Valuation Matrices, which extend
Adjacency Matrices and integrate the information of the
weights of edges [22], also enabling the application of
mathematical concepts to graphs [23]. Similarity calculation
on Valuation Matrices can be performed with the Eigenvalue
Method [22]. However, each mathematical approach usually
has a complexity of O(n+e)2 (n nodes and e edges). Several
approaches are described to improve this for a particular set
of data or within particular conditions [24], [25], [26], but the
performance of these algorithms for large data structures, like
feature graphs of Multimedia objects, still has to be improved.
In the remainder of this paper we describe and evaluate the
Graph Code Encoding Algorithm, Query Construction, and
Retrieval Execution with Graph Codes, as an extension of
graph-based Valuation Matrices for MMIR applications.
These algorithms can perform comparison tasks based on
graph data in O(n+ e) +O(1).

W.r.t Graph Codes and their Encoding, the following
discusses the mathematical and algorithmic concepts of a 2D
graph representation and its relevance for MMIR. We have
introduced Graph Codes in [5]. They are applicable to any
kind of graph, but we specifically designed them for MMIR.
We employ them to represent MMFGs and to transform these
into another mathematical space for fast and efficient MMIR.
Our Graph Code Encoding algorithm [5] uses the Valuation
Matrix VM of a given MMFG as a basis. This approach is
expected to require fewer calculations than e.g., comparable
vector-space transformations. As an example, we employ a
small subgraph of the MMFG of Figure 1b containing the
most relevant structures to illustrate the concepts presented in
this paper. Thus, we define our example-graph MMFGex as
shown in Figure 1b.

Valuation Matrices contain 1 row and column for each node
always resulting in square matrices. Edges between nodes n1

and n2 are represented in the matrix with their weight or a
value of 1 at position (n1, n2). For the above example, the
set of nodes N is given by N = {Person, Head, Human
Being, Individual, Hat, above}, represented by a value of 1
in one of the diagonals of the matrix. Thus, the Valuation
Matrix VM is defined as shown in Figure 1c. Graph Codes



employ a encoding function fenc, which calculates a numeric
value for each non-zero position of a Valuation Matrix based
on node or edge type and the corresponding attributes1. If
we apply such a fenc to the above example2, the encoded
Valuation Matrix VMenc, i.e. the corresponding Graph Code
GC is shown in Figure 1d. Going beyond this encoding, later,
attributes, weights, or other information about nodes and edges
can be encoded with more complex functions resulting in ar-
bitrary natural numbers. Based on Graph Codes, we introduce
algorithms for Query Construction and Query Execution in
section III, which are later evaluated in sections IV and V. To
prove their effectiveness and efficiency, comprehensive and
well annotated sample data is required.

To evaluate these Multimedia retrieval algorithms, an
appropriate Annotated Sample Dataset has to be available.
As the evaluation has to prove effectiveness, efficiency and
quality, the sample dataset must contain content description
annotations, a high Level Of Detail (LOD), and a relevant
number of samples to be processed. To analyse algorithms
for Multimedia processing, several datasets can be employed.
One of the most comprehensive collections of annotated
text-based sample data is maintained by the Text Retrieval
Conference (TREC) [27], a detailed overview of Audio
datasets (e.g. The Spoken Wikipedia Corpora) is given by
[28] and a commonly used dataset for video processing is
the Youtube8M [29]. For image processing, the Flickr30k set
[30], the DIV2K dataset [31], the IAPTRC12 dataset [32],
or the PASCAL VOC dataset [33] are some of the most
relevant collections. In our evaluation, we initially focus on
image processing, as feature extraction of images provides
a high level of detail and the sample datasets provide data
suitable for the experiments. Thus, high-resolution datasets
with accurate annotations are required to perform a recursive
feature extraction and to measure efficiency comparisons of
algorithms. Hence, we selected the Flickr30k, Div2K, and the
PASCAL datasets.

In summary, we can state that current technologies provide
a sufficient set appropriate algorithms, tools, and concepts
for extracting features of Multimedia content. Integrating data
structures as, e.g. the MMFG can fuse this information and
compile it into a large semantic graph structure. However,
the need to fuse many features into graphs to increase ef-
fectiveness contradicts the demand of higher performance for
retrieval, as graph-traversal algorithms become less efficient
with an increasing number of nodes and edges. Hence, finding
a solution that both provides a high level of detail for effective
retrieval and a highly performant and efficient model for sim-
ilarity algorithms is one major open challenge. This includes
the application of the Graph Code encoding to MMIR, the

1The function fenc can be adjusted deliberately to meet the requirements
of any application. In this paper, we chose an arbitrary selection of value
ranges representing type attributes of nodes and edges for the Graph Code
representation.

2The same colouring as in Figure 1b is applied. Values for types are
selected as follows: object-node = 1, synonym-node = 2, child-relationship
= 3, synonym-relationship = 4, relationship = 5, spacialrelationship-node = 6.
Node representing fields are given in bold.

selection or preparation of an appropriate test collection, and
evaluation of the solution.

III. MODELING AND DESIGN

A typical information retrieval function or algorithm IR
for a given query Q and a result set R can be generally
defined as IR(Q) → R. Here, Q is represented by a
MMFVGQuery object representing the query-features, and
R is a ranked list of MMFGs. The retrieval function IR
calculates the relevance based on the similarity between
MMFVGQuery and each element of the set of existing
MMFGs. For graphs like the MMFG, a metric for
similarity would be e.g., the Cosine Similarity [25].
Thus, for MMFGs, the retrieval function is defined as
IRMMFG(MMFGQuery) = {MMFG1, ...,MMFGn}. In
the case of Graph Codes and the corresponding algorithms,
each MMFG is represented by its GCMMFG and the retrieval
function is IRGC(GCQuery) = (GC1, ..., GCn). The result
of IRGC is a ordered vector of all Graph Codes of the
collection, in which ∀GCi ∈ IRGC : GCi > GC(i+1). The
comparison of Graph Codes has to be based on a well-defined
metric for similarity, in which both the mathematical aspects
of matrix comparison, and the semantical aspects of Graph
Code representation must be considered.

Thus, we now define Graph Code Feature Vocabularies
and Dictionaries that are needed for MMIR. Based on the
definitions, a metric for similarity calculations going beyond
node and edge types, can be defined. In each MMFG, the
set of n nodes representing distinct feature terms can be
regarded as unique identifiers for the MMFG’s feature term
vocabulary FV TMMFG = {ft1, ..., ftn}. This set of a
MMFG’s vocabulary terms thus represents the elements of
a corresponding Graph Code’s Dictionary, i.e. the set of
all individual feature vocabulary terms of a Graph Code.
However, it is important to uniquely identify the feature
vocabulary term assigned to a field of a Graph Code.
Thus, we introduce a Graph Code Dictionary for each
Graph Code, which is represented by a vector dictGC and
provides a ordered representation of the set FV TMMFG

with uniquely defined positions for each MMFG’s feature
vocabulary term. The elements in dictGC can be ordered
according to the corresponding MMFG3. In the Graph Code
matrix representation, each node field (in the diagonal)
of a Graph Code can now be unambigously mapped to
an entry of its Graph Code Dictionary vector, which can
be represented as dictGC = (ft1, ..., ftn). Applied to the
Graph Code of the previous example, the set of feature
vocabulary terms FV Tex would be {Person, Head, Human
Being, Individual, Hat, above}, in which the elements do
not have any order. The corresponding vector dictex =
(Person,Head,HumanBeing, Individual,Hat, above)
and - in difference to the set representation - uniquely
identifies each vocabulary term by its position within the
vector. When comparing the similarity of 2 Graph Codes, it

3Any ordering strategy can be applied, e.g. a breadth-first-eearch based on
the MMFG structure. In the following examples, we chose a manual ordering
to maximize illustration.



Fig. 2. MMFGex2 and representations. Figure 2a shows a second exemplary
MMFG, 2b the corresponding Graph Code GCex2. Figure 2c illustrates the
dictionary of GCex2, and 2d the intersections M∩. Figure 2e illustrates the
subtraction, 2f the encoded intersection Graph Code.

is important to compare only feature-equivalent node fields
in the diagonal of each matrix to each other. Each Graph
Code has its own, individual dictionary-vector dictGC , and
another Graph Code will have a different dictionary-vector
according to the content of its represented MMFG, typically
dictGC1 6= dictGC2. Feature-equivalent node fields of
Graph Codes can be determined through their corresponding
Graph Code Dictionaries, as these fields will have positions
represented by an equal feature vocabulary term of each
corresponding dictionary. For comparison, only the set
of intersecting feature vocabulary terms of e.g. 2 Graph
Codes is relevant. Thus, the set of intersecting feature
vocabulary terms FV T∩1,2 of e.g. 2 MMFGs can be defined
as FV T∩1,2 = {ft1, ..., ftn} = VMMFVG1 ∩ VMMFVG2 .
The methodology of intersecting sets can be also applied
to Graph Code dictionaries. The intersection of two
vectors dict∩1, 2 can be defined correspondingly as
dict∩1,2 = dictGC1

∩ dictGC2
. To illustrate the calculation of

dict∩, we introduce a second exemplary Graph Code GCex2

based on a MMFGex2, which is shown in Figure 2a.
The set FV Tex2 in this case is {above, Dog, Head, Animal,

Hat} and the set FTV∩1,2 of intersecting feature vocabulary
terms is {above, Head, Hat}. The dictionary-vector dictex2
thus is dictex2 = (above, Dog, Head, Animal, Hat). Figure 2b
shows its table representation and Figure 2c its list representa-
tion dictex2. The vector dict∩ex1,2 represents the dictionary of
intersecting vocabulary terms and only contains the subset of
vocabulary terms of dictex, where a equal vocabulary term can

be found in dictex2. The order of intersecting vocabular terms
in dict∩1,2 is given by the order of dictex. From an algorithmic
perspective, this means, that all elements of dictex are deleted,
that cannot be found in dictex2. The index position of dict∩1,2
typically is different from both dict1 and dict2. Based on
these dictionary-vectors, a translation of equivalent Graph
Code positions can be performed, as each feature vocabulary
term has a unique position within each of the Graph Code’s
dictionaries.

Applications will typically utilize a collection of MMFGs
and their corresponding Graph Codes. The overall feature term
vocabulary FV TColl = {ft1, ..., ftc} containing c vocabulary
terms of such a collection of n MMFGs can be defined as
the union of all MMFG’s feature term vocabularies and also
be represented by the union of all Graph Code Dictionaries
dict∪: FV TColl =

⋃n
i=1 FV TMMFGi

, where ∀i, j < n :
dict∪ = dicti × dictj . In this dict∪ dictionary-union-vector,
the ×-operation for calculating the union of dictionary-vectors
is implemented by traversing all the collection’s dicti dic-
tionaries and collecting unique dictionary vocabulary terms
into a single dictionary-vector. In our example with dictex
and dictex2, the calculated dict∪ = (Person, Head, Human
Being, Individual, Hat, above, Dog, Animal). If a dict∪ is
calculated for the complete collection of Graph Codes, it can
be regarded as a global dictionary-vector with collection-wide
unique positions for each feature vocabulary term.

Processing many different MMFGs will result in many
different Graph Codes having similar sizes, but different
vocabulary terms, leading to an increase of VColl. The Oxford
English Dictionary [34] e.g., contains 170.000 english words4

and if we assume, that applications exist, which produce
english terms as representations for feature-nodes, MMFGs
representing the overall vocabulary would result in matrices
of size 170.000 × 170.000 giving 28.9 billion matrix fields.
Calculations on this large number of fields will no longer be
efficient enough for MMIR. Of course, in some use cases, an
application-wide dictionary can be required. But in some other
applications, it would be prudent to employ a smaller dictio-
nary. Hence, two major approaches of modeling dictionaries
can be proposed:

Application-wide dictionary: in this scenario, we assume
that any Graph Code will be processed with the dictionary-
vector terms dict∪. If in an MMIR application all images are
almost similar, a processing and re-processing approach can
automatically increase or decrease the collection’s vocabulary
terms according to the analysis of new content. All existing
Graph Codes have to be adjusted whenever new indexing
terms are detected (the size of dict∪ increases) or whenever
existing Multimedia feature content is removed from the
collection (the size of dict∪ decreases). The big advantage of
this approach is, that all Graph Codes have exactly the same
size and identical positions represented by their dictionary-
vectors. This makes comparisons very easy as no further
transformation is required. It also simplifies the employment
of Machine Learning algorithms. However, a permanent re-

4Translation and multilingual support is not in scope of this paper and does
not affect the general concept of Graph Codes.



processing of all existing Graph Codes can be very expensive.
In this case, the following scenario should be preferred.

Dictionaries for smaller combinations of individual vo-
cabularies: if images from many different areas (i.e. with
many different feature vocabulary terms) have to be processed,
two Graph Codes can be compared based on the intersection of
their individual Graph Code’s dictionary vectors dict∩. In this
case, a mapping of corresponding feature vocabulary terms by
their position within each dictionary-vector can be performed
and equivalent node matrix fields can be calculated by a simple
transformation (i.e. re-ordering) of one of the dictionary-
vectors. As this also eliminates many unneccessary operations
(e.g. comparing unused fields of dict∪), this approach can be
very efficient, when Graph Codes vary significantly within a
collection.

Applied to GCex and GCex2 of our example above, the
application-wide dictionary dict∪ would give Graph Codes
with a size of 9× 9 matrix fields, whereas dict∩ would give
a intersection matrix of 3 × 3 fields. This intersection matrix
M∩(GC) can be calculated from a GC by removing any rows
and columns, that are not part of dict∩. Figure 2d shows the
intersection matrices of GCex and GCex2.

For comparison of these intersection matrices, we wish
to apply the standard matrix subtraction. However, due to
the different orders of dictex and dictex2, the matrix field
positions of the matrices do not represent the same feature
vocabulary terms. For example, the field (2,1) of GCex

represents the relationship between Hat and Head, but the
equivalent relationship in GCex2 is located in field (3,2). To
solve this, we introduce a equivalence function fequ(M∩),
which transforms a Graph Code intersection matrix or the
corresponding dictionary-vector in such a way, that the corre-
sponding dictionary-vector is ordered according to dict∪.

Thus, equivalence of a matrix field (mi,j) in M∩(GCi)
and a matrix field (nk,l) in M∩(GCj) and corresponding
dictionary vectors dicti and dictj can be defined as: ∀(mi,j) ∈
M∩(GCi),∀(nk,l) ∈M∩(GCj):

M∩(GCi) ∼ fequ(M∩(GCj))⇔

dicti(i) = fequ(dictj(k)) ∧ dicti(j) = fequ(dictj(l))

In the case of comparing only 2 Graph Codes, dict∪
automatically is ordered according to the first Graph Code.
Thus, in this case, the second dictionary-vector would
be re-ordered to match the order of the first one. This
re-ordering is also applied to the corresponding intersection
matrix of the Graph Code. In case of our example,
dictex2 = (above,Head,Hat) would be re-ordered to match
dictex = (Head,Hat, above). Thus, the resulting re-ordered
intersection matrix is shown in Figure 2e.

Based on the results of this section, we now define a metric
to calculate Graph Code Similarity as a basis for MMIR
retrieval applications. This metric enables MMIR application
to compare Graph Codes and thus utilize them for retrieval.
In case of Graph Codes and their matrix-based representation,
the calculation of similarity requires the consideration of rows,
columns and fields representing nodes and edges (i.e. node

Fig. 3. Examples of Graph Code metrics. Figure 3a shows the Adjacency
Matrices of the equivalent Graph Code fields of GCex and GCex2. 3b shows
the intersections M∩, and Figure 3c the GCQuery of our example.

relationships) of a MMFG. These nodes and relationships have
to be of equivalent node or relationship type for comparison.
This means, that it is important to compare the correct matrix
field position to each other, which typically is different in
e.g., 2 Graph Codes. Matrix field positions employed for the
definition of a metric represent nodes (i.e. detected features)
or edges (i.e. detected node-relationships), edge-types (i.e.
detected node relationship types), and their type values. The
definition of a metric for Graph Codes has to be applicable
for matrices, where rows and columns represent MMFG
nodes and the corresponding feature vocabulary terms. Matrix
cells represent node types (in one diagonal) and all other
non-zero matrix fields represent edge types and their values.
Based on these characteristics of Graph Code we can define
a metric MGC = (MF ,MFR,MRT ) as a triple of metrics
containing a feature-metric MF , a feature-relationship-metric
MFR and a feature-relationship-type-metric MRT .

The Graph Code Feature Metric MF can be employed
to calculate the similarity of Graph Codes according to
the intersecting set of dictionary vocabulary terms. MF is
defined as the ratio between the cardinality of dict∩ the
intersecting dictionary vocabulary terms and the cardinality
dicti a Graph Code’s dictionary vector. In the following
formulae, the notation |v| for vectors denotes the cardinality
of a vector v, i.e. the number of elements in this vector:
MF (GCi, GCj) = |dict∩|

|dicti| . Thus, the more features are
common in e.g., 2 MMFGs, the higher the similarity value
based on MF - independent of the relationships between these
corresponding MMIR features. In the above example, the
numerical distance between GCex and GCex2 based on the
metric MF is MF (GCex, GCex2) =

|dict∩ex1,2|
|dictex| = 3

6 = 0.5.

The Graph Code Feature Relationship Metric MFR is
the basis for the similarity calculation of MMFG-edges, i.e.



the non-diagonal and non-zero fields (representing edges of
deliberate types) of the Graph Code’s matrix representation.
This metric is only applied to equivalent fields (i.e. relation-
ships with the same source and target node) of intersection
matrices M∩ of two Graph Codes. We base this metric on
the non-diagonal fields of the Adjacency Matrix AM(M∩)
(i.e. the matrix containing only the values 1 and 0). Then,
MFR can be defined as ratio between the sum of all non-
diagonal fields and the cardinality of all non-diagonal fields.

MFR(GCi, GCj) =

∑
AM(M∩i,j)−n
|AM(M∩i)|−n . Thus, MFR represents

the ratio between the number of non-zero edge-representing
matrix fields and the overall number of equivalent and in-
tersecting edge-representing matrix fields of e.g. two Graph
Codes. In this way, the metric MFR counts all edges existing
between source and target nodes, independent of the equiva-
lence of the edges’ types.

The AM(M∩(GCex)) and the equivalent matrix
fequ(M∩(GCex2)) of our example is shown in Figure
3a. Looking at the two Graph Codes in Table 3a, there are
six potential positions representing edges: 3 fields in the
upper right of the diagonal and 3 fields in the lower left. Out
of these possible positions, only 2 contain edges. These are
located in matrix positions (2,1) and (3,2). Thus, only 2 out
of 6 possible edge representing matrix field positions have a
non-zero value. Thus, the numerical distance of the metric
MFR(GCex, GCex2) =

∑
AM(M∩i,j)−n
|AM(M∩i)−n| = 5−3

9−3 = 2
6 = 0.33.

Note, that currently only the existance of an edge -
independent from its type - is employed for the metric
MFR. However, also the type of each relationship can
indicate additional similarity. Therefore, we will introduce an
edge-type-based metric in the next section.

The Graph Code Feature Relationship Type Metric MRT is
based on the feature-relationship-types of Graph Codes. As the
Graph Code encoding function fenc encodes different MMFG
edge-types with different base values, feature-relationship-
type-similarity can only exist, when the edge-types represented
by equivalent matrix fields of Graph Codes are equal. In
case of MRT , calculations are performed no longer on the
adjacency matrices of Graph Codes, but on the M∩ matrices
of the Graph Codes as shown in Figure 3b. A matrix field
is equal to another, if the subtraction of their values returns
zero. If all equivalent fields are equal, the sum of these fields is
zero. While MFR is based on the pure existence of a non-zero
edge representing matrix field, MRT additionally employs the
value of this matrix field (representing the relationship type)
and therefore represents the ratio between the sum of all non-
diagonal matrix fields and their cardinality.

MRT (GCi, GCj) =

∑n,i6=j
i,j (|M∩i −M∩j |)
|M∩i| − n

. In our example, the difference of these two intersection
matrices for non-diagonal fields (i.e. i 6= j) is shown in
Figure 2e. Thus, the mathematical sum of this matrix is 1.
This means, that 1 out of 6 possible fields had a different
edge type value. The numerical distance of the metric MRT

for these two Graph Codes can be calculated as

MRT (GCi, GCj) =

∑n,i 6=j
i,j (|M∩i −M∩j |)
|M∩i| − n

=
1

9− 3
=

1

6
= 0.16

.
Thus, in terms of our example, the overall similarity

MGC between GCex and GCex2 is MGC(GCex, GCex2) =
(MF ,MFR,MRT ) = (0.5, 0.33, 0.16). This means, that the
similarity based on common vocabulary terms MF is 0.5, the
similarity based on common edge positions MFR is 0.33,
and the similarity of equal edge types MRT is 0.16.

Based on these metrics for Graph Codes, the MMIR re-
trieval can utilize comparison functions to calculate a ranked
list of results. Query Construction with Graph Codes is
possible in 3 ways: a manual construction of a query Graph
Code GCQuery, the application of the Query by Example
paradigm, or an adaptation of existing Graph Codes. A manual
construction of a MMFGQuery by users can result in a
GCQuery Graph Code, which then is employed for querying.
This manual construction could be performed by entering
keywords, structured queries (e.g. in a query language like
SPARQL [35]), or also natural language based commands
[36] into a MMIR application’s query user interface. The
MMFGQuery and corresponding GCQuery in this case is
created completely from scratch. Query construction can be
based on the Query by Example paradigm [37]. In this case, a
GCQuery is represented by an already existing Graph Code,
which typically is selected by the user to find similar assets
in the collection of a MMIR application. An adaptation of
an existing Graph Code can lead to a GCQuery as well. A
refinement in terms of Graph Codes means, that e.g. some non-
zero fields are set to zero, or that some fields get new values
assigned according to the Graph Code encoding function fenc.
From a user’s perspective, this can be performed by selecting
detected parts of corresponding assets and chosing, if they
should be represented in the query or not. A prototype for all
3 options of Graph Code querying is illustrated in [5] and
available on Github [7]. The adaptation of existing MMFGs
in terms of the Graph Code matrices is shown in Figure
3c, which shows an exemplary GCQuery and an exemplary
adapted version GC ′Query.

To further optimize the execution of such a query, we
construct a compressed Graph Code GCQuery−C by deleting
all rows and columns with zero values from an adapted
Graph Code. This GCQuery−C provides an excellent basis
for comparison algorithms, as it typically contains very few
entries, which would also reduce the number of required
matrix comparison operations. In our example, GCQuery−C
would semantically represent a search for images containing
a red watch (see blue coloured fields of Figure 3c. Instead
of traversing feature graphs to match sub-graphs, a GCQuery

comparison based on Graph Codes employs matrix-operations
to find relevant Graph Codes based on their similarity to
the GCQuery implemented by the metric MGC . This
approach highly enables the use of Machine Learning, Pattern
Matching, and specialized hardware for parallelisation of



query execution, which is described now in more detail.

Information Retrieval based on Graph Codes uti-
lizes the introduced retrieval function IRGC(GCQuery) =
(GC1, ..., GCn), which returns a list of Graph Codes ordered
by relevance implemented on basis of the similarity metric
MGC = (MF ,MFR,MRT ) and thus directly represents the
retrieval result in form of a ranked list. The calculation
of this ranked list can be performed in parallel, if special-
ized hardware is available. For a given query Graph Code
GCQuery, a similarity calculation with each Graph Code GC
of the collection is performed, based on the Graph Code
metric MGC . Compared to graph-based operations, matrix-
based algorithms can be highly parallelized and optimized.
In particular, modern GPUs are designed to perform a large
number of independent calculations in parallel [38]. Thus, the
comparison of two Graph Codes can be done in O(1) on
appropriate hardware. It is notable, that even current Smart-
phones or Tablets are produced with specialized hardware for
parallel execution and ML tasks like Apple’s A14 bionic chip
[39]. Therefore, the Graph Encoding Algorithm also performs
well on Smartphones or Tablets. In the section V of this paper,
we provide detailed facts and figures. The basic algorithm for
this comparison and ordering is outlined in pseudocode below:
for each GC in collection

--- parallelize ---
calculate the intersection matrices

of GC_Query and GC
--- parallelize each ---

calculate M_F of GC_Query and GC
calculate M_FR of GC_Query and GC
calculate M_RT of GC_Query and GC

--- end parallelize each ---
compare
--- end parallelize ---
order result list according to

value of M_F
value of M_FR where M_F is equal

value of M_RT where M_F and M_FR are equal
return result list

To calculate the ranked result list, this algorithm thus utilizes
the three metrics MF , MFR and MRT in a way, that first,
the similarity according to MF (i.e. equal vocabulary terms)
is calculated. For those elements, that have equal vocabulary
terms, additionally the similarity value of MFR for similar
feature relationships is applied for ordering. Also, for those
elements with similar relationships (i.e. edges), we also apply
the metric MRT , which compares edge types. Hence, the final
ranked result list for a GCQuery Graph Code is produced by
applying all 3 Graph Code metrics to the collection.

Summarizing this section, we discussed the conceptual de-
tails, their mathematical background and formalisation, a con-
ceptual description of the and algorithms for processing Graph
Codes and their application for MMIR. We introduced Graph
Code feature vocabularies and dictionaries as a foundation for
further modeling. Especially Graph Code dictionary vectors
are the basis for several operations and provide a clearly
defined, indexed list of vocabulary terms for each Graph Code.
The design of MMIR applications can employ application-
wide dictionaries or dictionaries for smaller or individual

vocabularies, which provides high flexibility in the application
design when using Graph Codes. In this section, we also
introduced an example to illustrate the corresponding matrix
operations, which is also employed as a basis for the calcu-
lation of Graph Code similarity. Similarity of Graph Codes
is defined by a metric MGC = (MF ,MFR,MRT ), which
addresses different properties of the underlying MMFG (i.e.
the vocabulary terms, edge relationships, and edge relationship
types). With this metric-triple, a comprehensive comparison of
Graph Codes can be implemented. Based on this metric, we
discussed the construction of Graph Code queries, which can
be completed manually, as Query by Example, or in terms of a
adaptation of existing Graph Codes and will result in a query
Graph Code. This query object can be compressed and will
provide an excellent basis for comparison algorithms based on
the metric MGC . We also showed, that MMIR retrieval based
on Graph Codes can be highly parallelized.

IV. IMPLEMENTATION AND TESTING

For the implementation of algorithms and concepts, we
chose Java [40] and Swift [41] as programming languages. As
our corresponding frameworks like the Generic Multimedia
Analysis Framework [6] are already implemented in Java, we
also chose Java as a programming language for the Graph
Code algorithms and built components (section III). For the
later evaluation, we also implemented the Graph Code Re-
trieval algorithm in Swift for IOS [41] to evaluate it on an iPad
Pro [42], as we wanted to investigate the use of parallelisation
in terms of the A14 bionic chip [39] in this device. As the
implementation basically follows the algorithms and functions
described in the last section, the details of the implementation
including source code can be found at Github [7], where also
a jupyter notebook [43] is available. In addition to this Java
implementation, we also built a second implementation based
on the graph-database Neo4J [4], which we can use for com-
parison. Therefore, the GMAF has been extended to provide
an additional MMFG-export option in the Neo4J format. Thus,
in both Neo4J and the Java implementation, the same MMFGs
can be used for further processing. For the comparison of
the Neo4J and the Java implementation, we installed both the
Neo4J graph database and the Java Graph Code algorithms on
a 16” Macbook Pro (2.4 GHz, 8-Core Intel Core i9 processor,
64 GB RAM, AMD Radeon Pro 5500M 4 GB Graphics card,
2 TB SSD Storage) running MacOS 11.2 Big Sur5. We also
implemented the Graph Code algorithms in Swift for IOS
and ran them on an iPad Pro (13”, 4. generation, A14 bionic
ML chip). In addition to running the Graph Code natively on
the iPad, we also ran the algorithm in the iPad Simulator on
the Macbook Pro. The basis for these experiments are Graph
Codes, which can be generated with different Levels Of Detail
(LOD) [5]. In our evaluation, this generation is performed
by the GMAF framework [6], which provides options to
determine the number of recursions used for object detection.
Recursions in GMAF mean, that a detected object’s bounding

5For comparison reasons, we also installed Windows 10 on this machine
and double checked, that the evaluation results, described in the next section,
are independent of the operating system



Fig. 4. Initial Testing - Highresolution image and LOG.

box is processed again and the identified sub-objects are fused
into the resulting MMFG. After some recursions, the bounding
boxes become too small to represent any useful detected object
and the GMAF processing terminates for this object. The
higher an image’s resolution, the more recursions are possible
and the higher the LOD of the detected features. To illustrate
the improvement in quality, when using Graph Codes and
the GMAF framework, we evaluated a given high-resolution
image (see Figure 4) and applied the GMAF processing with
different settings for the LOD. Figure 4 shows the results of
this testing. Additionally, a selection of the detected feature
vocabulary terms FV TMMFG for each recursion is also given
in Figure 4. All these vocabulary terms shown in Figure 4
have been actually detected by the GMAF framework. No
additional meta-data have been attached to the MMFGs. This
testing shows, that the LOD can be increased, if the source
image is of high resolution. Based on this prerequisite, we
will now focus on a detailed evaluation of our prototypical
proof-of-concept implementation.

V. EVALUATION

To evaluate the performance of our proof-of-concept im-
plementation, we follow well established methods for exper-
iments to address efficiency (i.e. runtime behaviour of the
MMIR application) and effectiveness (precision and recall).
Experiment 1 evaluates the efficiency of the algorithms based
on the number of input graphs n, experiment 2 evaluates
the effectiveness of the Graph Code Algorithm based on
annotations from various datasets. As discussed in the previous
section, the LOD is very important for MMIR applications.
However, existing datasets do not meet the requirements of a
full level-of-detail processing. The Flickr30k dataset contains
only low-res images, which limits number of recursions and
therefore the LOG in object-detection to level 2, as then no
further objects can be identified due to the low resolution
of the sample images. The DIV2K dataset provides higher

resolutions, and can be employed up to a LOD of level 3, but
to measure full feature detection capabilities of the GMAF,
an annotated dataset of high-resolution images would have
to be created and maintained. Currently, such a dataset does
not exist. We are considering to create and publish such a
dataset in our future work. Fortunately, for proving efficiency
and effectiveness of Graph Codes, the LOD achieved with
current datasets, is high enough to employ existing annotated
datasets for our experiments.

Goal of our Efficiency Experiment is to compare the Graph
Encoding Algorithm to standard graph algorithms. Our hypoth-
esis is, that Graph Codes perform better than graph-traversal-
based algorithms. For retrieval, the calculation of similarity
is very important. Thus, we compared the retrieval algorithm
of Neo4J (Node similarity) to the Graph Encoding Algorithm
performed on the same machine (Java implementation) and
on Apples A14 Bionic in an iPad Pro. As input for the
similarity calculation we used a selection of c random images
of the corresponding dataset and calculated the overall number
of nodes n and edges e. To illustrate the correspondence
bettwen the size of the MMFG, and the runtime behaviour,
we performed this experiment on existing datasets with low
(Flickr30K), medium (DIV2K) resolution samples, and on a
high-resolution image downloaded from Adobe Stock [44].
For the low resolution evaluation with the Flickr30k dataset,
we were able to produce a LOD of level 3. The results of this
experiment are shown in Figure 5a. The medium resolution
evaluation with the DIV2K dataset produced LODs of level
4 and 5 and shown in Figure 5b. Finally, the high-resulution
evaluation generated a LOD of level 6 with results summarized
in Figure 5c. This last evaluation has also been performed on
an Apple iPad Pro and on a Macbook Pro (IOS Simulator).

For all experiments, we performed the standard similarity
search (production quality) of Neo4J according to the Neo4J
guidelines and benchmarks [4]. Before each experiment, we
cleared the Neo4J database and loaded only the nodes, that
are relevant for the experiment. In the Neo4J query, we
adjusted the number of recursions for the graph-search to the
LOD-level of the MMFG. The corresponding Neo4J-Query
is also available at Github [7]. The experiment in Figure 5c
shows, that the best performance is achieved with the iPad
Pro application running in Apple’s Simulator application. The
reason for this is, that in this case they run natively on a Apple
Macbook Pro with 64GB of memory and 8-core-CPU, which
is still faster than any mobile device. It is remarkable though,
that native performance on the iPad Pro is still better than any
other measuring (e.g. Neo4J or Java).

For the first experiment, the Graph Code algorithms out-
perform current graph-traversal algorithms by greater than a
factor of 5 and, more importantly, grows linearly, rather than
the exponential growth of graph-traversal-based algorithms.
The larger the graph becomes and the more levels it contains,
the greater the difference is between classic graph-traversal
algorithms and Graph Code processing. These results support
our hypothesis, that Graph Codes are more effective than
current graph-based algorithms for MMIR. Of course, there
are many options also within Neo4J to tune and optimize the
database and the algorithms, but in any case, graph-traversal



Fig. 5. Graph Code experiment results. 5a shows the efficience of the Java Graph Code algorithms compared to Neo4J on the Flickr30k dataset, 5b the
results of the DIV2K dataset. Figure 5c provides a runtime comparison, 5d and 5e detailed results of the Precision and Recall evaluations.

will have square or exponential complexity, while Graph
Codes perform linearly. Additionally, also for Graph Codes
several optimisations according to the MMIR application de-
sign, are imaginable and will be addressed in our future work.
Another important point for Multimedia processing is, that
Graph Codes perform well on Smartphones or Tablets as they
can utilize the existing GPU hardware of these devices. Hence,
the conclusion of this experiment is, that any Multimedia
application can employ fast indexing and retrieval directly on
the user’s device.

The goal of our Effectiveness Experiment is, to calculate
precision and recall of a random set of 1000 Flickr30k images.
Our hypothesis is, that precision and recall values should
increase due to the higher LOD. For this experiment, we
did not feed any metadata into the GMAF, which would
be usual. So, the results reflect the pure object detection
capabilities of the GMAF-framework without any semantic
enrichment. Indexing and retrieval has been completed with
Graph Codes. However, as the Flickr30K dataset has been
annotated manually, many different terms are employed in
describing the same objects as no common ontology has
been applied. Hence, we performed two sub-experiments to
reflect these flaws in dataset standardisation. In the first sub-
experiment (No-Synonym), only the nouns from the queries
have been employed in creating a GCSearch object. This
sub-experiment will deliver results for ”guitar” only, where
the semantic processing of the image has detected the term
”guitar”. The second sub-experiment (With-Synonym) also
employs synonyms for the nouns when creating the GCSearch.
In this case, the GCSearch will contain also synonyms in the
query. So when querying ”guitar”, it would also contain e.g.
”banjo” or ”bass” in the query.

Thus, these experiments also reflect the quality of standard-
isation within the Flickr30K dataset. Figure 5d shows values

for the relevant objects rel in the dataset, the selection sel
by the algorithm, the number of true positive results tp, the
number of true negative results tn, precision P and recall R.
We investigated further these values of P and R and disovered
some flaws in the Flickr30k dataset. In our manual review
of the annotations and corresponding images, we found many
inaccurate annotations. About 80% of the ”false negatives” i.e.
actually correct, but with incorrect input image annotations.
In general, the Flickr30k dataset would have to be reviewd
and corrected in order to perform further tests. After this
discovery, an additional experiment with the PASCAL VOC
dataset [33] has been performed. This dataset comes with
pre-defined object classes and annotations. An experiment of
R. Scherer [45], published in 2020 and proposing a ”Salient
Object Detector and Descriptor by Edge Crawler” algorithm
produced an average precision of 78.58%. Experiment results
are shown in Figure 5e and demonstrate, that the GMAF and
Graph Code processing increased the average precision to
96.26%.

Discussin this experiment, the object detection of GMAF
and the corresponding Graph Code representation actually
is more accurate than the annotation file metadata of the
Flickr30k dataset. In ”real world” tests, we were able to
produce Precision and Recall results of ¿ 97%. The experiment
with the PASCAL dataset also supports this and provided
about 15% better results with an average precision of 96% and
a recall of 92%. These results support our hypothesis, that the
Graph Codes significantly increase the effectiveness of MMIR
due to their higher LOD. Thus, the accuracy of the results in
MMIR applications is even higher than any manual annotation
as the GMAF fuses detected objects with textual annotations
found in Social Media posts, Metadata, or on corresponding
websites.

In summary, we demonstrated the validity of the modeling



and implementation by showing, that the actual results with
respect to efficiency and effectiveness perform better than
current reference algorithms and thus that Graph Codes are
highly relevant for future MMIR applications.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented Graph Codes with corresponding
mathematical and algorithmical methods and objectives. We
discussed the mathematical model of the algorithms and
the advantages of matrix calculations compared to graph-
traversal operations, by ensuring that Graph Codes can be
regarded semantically equivalent. We showed results from
experiments which support, that Graph Codes provide a fast
and easy-to-implement solution for MMIR applications, which
utilite feature graph structures. Our experiments show, that
calculations in the 2D matrix space significantly outperform
graph-traversal algorithms and that the implementation of
Graph Codes can be satisfactorily ported to any device
(e.g. tablets or smartphones). Graph Codes do not require
any databases or other prerequisites and can be executed
directly within any application. This facilitates installation
and deployment of Graph Code based applications.

We also discovered some open remaining challenges. As
we have been focussing here on images, further research with
respect to the application of Graph Codes to text, audio and
video assets is possible. This would significantly increase
the detected LOD in the MMFGs, when features of various
Multimedia types are fused into a single MMFG. Another
major challenge is, that a well annotated set of sample data
for high-resolution, feature-rich MMIR applications has to
be created. Our future work will address these challenges
to further show, that Graph Codes provide a highly efficient
extension to Multimedia Databases for indexing and retrieval.
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